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Abstract

A design of inserting in parallel an impermeable sheet to divide an open conduit into two subchannels for conducting double-pass
laminar countercurrent operations under uniform heat fluxes, resulting in substantially improved the heat-transfer rate, has been
designed and investigated theoretically by using an eigenfunction expansion in terms of power series for the homogeneous part and
an asymptotic solution for the non-homogeneous part. The theoretical results of heat-transfer efficiency enhancement in double-pass par-
allel-plate heat exchangers are represented graphically and compared with those in the single-pass operations without an impermeable
sheet inserted. The influence of the impermeable-sheet location on the heat-transfer efficiency enhancement as well as on the power con-
sumption increment in double-pass operations has also been delineated.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Most of the interest devoted to the heat transfer in engi-
neering applications is the study of the thermal response of
the conduit wall and fluid temperature distributions to the
two cases of the uniform wall temperature (Dirichlet prob-
lem) and uniform heat flux (Neumann problem). The sys-
tem at steady state with laminar flow of the negligible
axial conduction in cylindrical and parallel-plate geome-
tries is known as the classical Graetz problem [1–3].
Michelsen and Villadsen [4], Papoutsakis et al. [5], Wei-
gand [6] and Bilir [7] examined the effects of axial conduc-
tion for laminar flow inside conduit for low Prandtl
number fluids, as referred to the extended Graetz problem.
Moreover, Papoutsakis and Ramkrishna [8,9], Bernier and
Baliga [10], Amin and Khan [11] and Yin and Bau [12] ana-
lyzed the conjugated Graetz problem with two or more
contiguous phases or streams.
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Analytical treatment of Graetz and conjugated Graetz
problems for laminar flow is mainly based on the eigen-
function expansion technique in terms of power series in
the noted studies [13–16]. The solution of conjugated Gra-
etz problems is obtained successfully by solving the Sturm–
Liouville systems and consequently the solution expressed
in the form of the infinite series consisting of the eigenvalue
associated with each eigenfunction. The alternative config-
uration with the recycle-effect concept leads to improve the
heat-transfer efficiency enhancement due to increasing the
flow rate of fluid and applies to many separation processes
[17,18] and chemical reactors [19,20].

There are many studies [21–24] devoted to the heat-
transfer problem in a parallel-plate channel. The present
study is an extension of our previous work [16] to apply
the case of the Neumann boundary condition for the con-
jugated Graetz problem of which the heat fluxes at the
walls were specified. The surface resistant along the flow
path, as expressed in the wall Nusselt number, could be a
straightforward manner to analyze the heat-transfer effi-
ciency of multistream or multiphase problems coupling
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Nomenclature

B conduit width, m
De equivalent diameter of the conduit, m
dmn coefficient in the eigenfunction Fa,m

emn coefficient in the eigenfunction Fb,m

Fm eigenfunction associated with eigenvalue km

f friction factor
Gm function defined during the use of orthogonal

expansion method
Gz Graetz number, VW/aBL

H defined by Eqs. (20) and (21)
�h average heat-transfer coefficient, kW/m K
Ih heat-transfer enhancement based on single-pass

devices, defined by Eq. (57)
Ip power consumption increment of, defined by

Eq. (59)
L conduit length, m
‘wf friction loss in conduit, N m/kg
Nu average Nusselt number
P power consumption, N m/s
q00 heat flux on the wall, J/m2 s
Re Reynolds number
Sm expansion coefficient associated with eigenvalue

km

V input volume flow rate of conduit, m3/s
v velocity distribution of fluid, m/s
v average velocity of fluid, m/s
W conduit height, m
x transversal coordinate, m
z longitudinal coordinate, m

Greek symbols

a thermal diffusivity of fluid, m2/s
a1 constant defined by Eq. (20)
a2 integration constants in Eq. (22)
a3 integration constants in Eq. (22)
b1 constant defined by Eq. (21)
b2 integration constants in Eq. (23)
b3 integration constants in Eq. (23)
D impermeable-sheet location
d impermeable-sheet thickness, m
g transversal coordinate, x/W
h defined by Eq. (12)
km eigenvalue
l fluid viscosity, kg/m s
n longitudinal coordinate, z/(LGz)
q fluid density, kg/cm3

/ defined by Eq. (12)
w dimensionless temperature, k(T � TI)/q

00W
w dimensionless bulk temperature

Subscripts

a subchannel a
b subchannel b
F at the outlet
I at the inlet
L at the end of the channel
0 in a single-pass device without recycle
w at the wall surface
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mutual conditions at the interface. The purposes of the
present study are (a) to obtain the wall temperature distri-
bution in the axial direction under uniform wall heat fluxes
based the superposition technique; (b) to study the device
performance improvement in double-pass parallel-pate
laminar countercurrent heaters or coolers by inserting an
impermeable sheet in parallel; (c) to discuss the influence
of the impermeable-sheet location on the heat-transfer effi-
ciency enhancement. The solution methodology developed
here in a simple form for a double-pass parallel-pate heater
or cooler is made on the general treatment which can be
applied to the heat- and mass-transfer problem of any arbi-
trary wall heat flux distribution or wall temperature distri-
bution with more general geometry and it is the value of
the present work.

2. Temperature distributions

An impermeable sheet is inserted into a parallel-plate
heat exchanger to divide an open duct with height W,
length L, and width B into two subchannels a and b as
show in Fig. 1. The thickness of the impermeable sheet is
d and compared to the height W, it can be neglected, say
d�W. The fluid with volumetric flow rate V and temper-
ature TI firstly feeds into subchannel a and then, the fluid
was pumped into subchannel b at the end of the conduit
with the aid of a convectional pump. The fluid is well mixed
at the inlet and the outlet of each subchannel.

To simply the problem, the following assumptions are
made: constant physical properties of fluid; fully-developed
laminar flow in each subchannel; neglecting the entrance
length and longitudinal heat conduction; ignoring the end
effects and the thermal resistance of the impermeable sheet.
With the aid of these assumptions, the energy balance
equations of a double-pass heat exchanger with constant
heat flux were formulated and written as

o2waðga; nÞ
og2

a

¼ vaðgaÞW 2
a

aLGz

� �
owaðga; nÞ

on
ð1Þ

o
2wbðgb; nÞ

og2
b

¼ vbðgbÞW 2
b

aLGz

� �
owbðgb; nÞ

on
ð2Þ

where va and vb are the velocity distributions in subchan-
nels a and b, respectively, and they are



Fig. 1. Double-pass parallel-plate heat exchanger.
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vaðgaÞ ¼ vað6ga � 6g2
aÞ 0 6 ga 6 1 ð3Þ

vbðgbÞ ¼ �vbð6gb � 6g2
bÞ 0 6 gb 6 1 ð4Þ

va ¼ V =DWB ð5Þ
vb ¼ V =ð1� DÞWB ð6Þ

The dimensionless groups in Eqs. (1)–(6) are

ga ¼
xa

W a

; gb ¼
xb

W b

; n ¼ z
LGz

; Gz ¼ VW
aBL

;

wa ¼
kðT a � T IÞ

q00W ; wb ¼
kðT b � T IÞ

q00W ;

D ¼ W a

W
; 1� D ¼ W b

W
ð7Þ

and the corresponding boundary conditions are

owað0; nÞ
oga

¼ �D ð8Þ

owbð0; nÞ
ogb

¼ �ð1� DÞ ð9Þ

wað1; nÞ ¼ wbð1; nÞ ð10Þ
owað1; nÞ

oga

¼ � D
1� D

owbð1; nÞ
ogb

ð11Þ

In order to remove the inhomogeneous boundary condi-
tions (Eqs. (8) and (9)), the linear superposition of an
asymptotic solution, h(g,n), and a homogeneous solution,
/(g,n) is made and the complete solutions of Eqs. (1)
and (2) are as follows:

waðga; nÞ ¼ haðga; nÞ þ /aðga; nÞ ð12Þ
wbðgb; nÞ ¼ hbðgb; nÞ þ /bðgb; nÞ ð13Þ
2.1. Asymptotic solution of inhomogeneous boundary

conditions

The governing equations with inhomogeneous boundary
conditions can be written as similar to Eqs. (1) and (2)
o2haðga; nÞ
og2

a

¼ vaðgaÞW 2
a

aLGz

� �
ohaðga; nÞ

on
ð14Þ

o2hbðgb; nÞ
og2

b

¼ vbðgbÞW 2
b

aLGz

� �
ohbðgb; nÞ

on
ð15Þ

ohað0; nÞ
oga

¼ �D ð16Þ

ohbð0; nÞ
ogb

¼ �ð1� DÞ ð17Þ

hað1; nÞ ¼ hbð1; nÞ ð18Þ

ohað1; nÞ
oga

¼ � D
1� D

ohbð1; nÞ
ogb

ð19Þ

While the fluid is sufficiently far downstream from the inlet,
one can expect that the temperature profile of the fluid
in the radial direction is unchanged and increased linear
in n under the constant heat fluxes on the walls. Hence,
it seems reasonable to take the asymptotic solutions of
ha(ga,n) and hb(gb,n) as follows:

haðga; nÞ ¼ a1nþ H aðgaÞ ð20Þ

and

hbðgb; nÞ ¼ b1

1

Gz
� n

� �
þ HbðgbÞ ð21Þ

Substituting Eqs. (20) and (21) into Eqs. (14) and (15) and
integrating twice of the resultant equations give

haðga;nÞ ¼ a1nþ a1D g3
a �

1

2
g4

a

� �
þ a2 lngaþ a3 ð22Þ

hbðgb;nÞ ¼ b1

1

Gz
� n

� �
þ b1ð1�DÞ g3

b�
1

2
g4

b

� �
þ b2gbþ b3

ð23Þ
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in which a1 and b1 are the undetermined constants and a2,
a3, b2 and b3 are the integration constants.

2.2. Eigenfunction expansions of the homogeneous problem

The governing equations of the homogeneous problem
are exactly the same as Eqs. (14) and (15) except that the
homogeneous solution /a(ga,n) and /b(gb,n) have been
incorporated with the corresponding boundary conditions
are

o/að0; nÞ
oga

¼ 0 ð24Þ

o/bð0; nÞ
ogb

¼ 0 ð25Þ

/að1; nÞ ¼ /bð1; nÞ ð26Þ
o/að1; nÞ

oga

¼ � D
1� D

o/bð1; nÞ
ogb

ð27Þ

The explicit solutions of /a(ga,n) and /b(gb,n) are thus
obtained by applying the method of separation of variables
as follows:

/aðga; nÞ ¼
X1
m¼0

Sa;mF a;mðgaÞGmðnÞ ð28Þ

/bðgb; nÞ ¼
X1
m¼0

Sb;mF b;mðgbÞGmðnÞ ð29Þ

Substituting Eqs. (28) and (29) into the governing equa-
tions of /a(ga,n) and /b(gb,n) gives

GmðnÞ ¼ e�km
1

Gz�nð Þ ð30Þ
F 00a;mðgaÞ � kmDð6ga � 6g2

aÞF a;mðgaÞ ¼ 0 ð31Þ
F 00b;mðgbÞ � kmð1� DÞð6gb � 6g2

bÞF b;mðgbÞ ¼ 0 ð32Þ

and the boundary conditions in Eqs. (24)–(27) can be
rewritten as

F 0a;mð0Þ ¼ 0 ð33Þ
F 0b;mð0Þ ¼ 0 ð34Þ
Sa;mF a;mð1Þ ¼ Sb;mF b;mð1Þ ð35Þ

Sa;mF 0a;mð1Þ ¼ �
D

1� D
Sb;mF 0b;mð1Þ ð36Þ

Combination of Eqs. (35) and (36) yields

F b;mð1Þ
F a;mð1Þ

¼ � D
1� D

F 0b;mð1Þ
F 0a;mð1Þ

ð37Þ

To avoid the loss of generality, the eigenfunctions Fa,m(g)
and Fb,m(g) are assumed to be polynomials and obtained
with the aid of Eqs. (33) and (34) as follows:

F a;mðgÞ ¼
X1
n¼0

dmng
n; dm0 ¼ 1ðselectedÞ; dm1 ¼ 0 ð38Þ

F b;mðgÞ ¼
X1
n¼0

emng
n; em0 ¼ 1ðselectedÞ; em1 ¼ 0 ð39Þ
where the coefficients dmn and emn were expressed in terms
of km by substituting Eqs. (38) and (39) into Eqs. (31) and
(32), as referred to in Appendix A. Thus, the eigenfunctions
associated with the corresponding eigenvalues are obtained
in Eqs. (38) and (39). The mathematical treatment of such
homogeneous boundary value problem is the same as per-
formed in our previous work [16]. Besides, the constants of
Sa,m and Sb,m in Eqs. (28) and (29) can be calculated from
orthogonality conditions when n 6¼ m:

W b

Z 1

0

W 2
avaðgaÞ
aLGz

� �
Sa;mSa;nF a;mF a;n dga

þ W a

Z 1

0

W 2
bvbðgbÞ
aLGz

� �
Sb;mSb;nF b;mF b;n dgb ð40Þ
2.3. Complete solution of a double-pass parallel-plate heat

exchanger

A set of four simultaneous equations was obtained by
substituting of Eqs. (22) and (23) and (28) and (29) into
Eqs. (12) and (13) with the use of boundary conditions
Eqs. (8)–(11) as follows:

a2 ¼�D ð41Þ
b2 ¼�ð1�DÞ ð42ÞX1
m¼0

Sa;mF 0a;mðgaÞGmðnÞ þ a1Dþ a2

¼� D
1�D

X1
m¼0

Sb;mF 0b;mðgbÞGmðnÞ þ b1ð1�DÞ þ b2

 !

ð43ÞX1
m¼0

Sa;mF 0a;mðgaÞGmðnÞ þ a1nþ
D
2

a1 þ a2þ a3

� �

¼
X1
m¼0

Sb;mF b;mðgbÞGmðnÞ þ b1

1

Gz
� n

� ��

þð1�DÞb1

2
� b2 þ b3

�
ð44Þ

However, these six unknowns, say a1, a2 and a3 for sub-
channel a and b1, b2 and b3 for subchannel b, have to be
determined and it needs two more additional equations
to solve the unknowns.

The average dimensionless outlet temperature wF may
be calculated at the end of subchannel b by

wF ¼ �
Z 1

0

vbW bB
V

wbðgb; 0Þdgb

¼
X1
m¼0

�Sb;m e�km=Gz

ð1� DÞkm
F 0b;mð1Þ � F 0b;mð0Þ
n o

þ
Z 1

0

6gb � 6g2
b

� � b1

Gz
þ b1ð1� DÞ g3

b �
1

2
g4

b

� ��

�ð1� DÞgb þ b3

�
dgb ð45Þ

or may be examined by the overall energy balance on the
whole system
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V ð0� wFÞ ¼
Z 1

Gz

0

Gz
aBL
W a

owað0; nÞ
oga

dn

þ
Z 1

Gz

0

Gz
aBL
W b

owbð0; nÞ
ogb

dn ð46Þ

The left-hand side in Eq. (46) refers to the net outlet energy
while the right-hand side is the total amount of the heat
transferring from the walls into the flowing fluid. Taking
Eqs. (8) and (9) into Eq. (46) gives

wF ¼ 2=Gz ð47Þ
The average dimensionless temperatures at the end of the
conduit in two subchannels a and b are, respectively,

waL ¼
Z 1

0

vaW aB
V

wa ga;
1

Gz

� �
dga

¼
X1
m¼0

Sa;m

Dkm
F 0a;mð1Þ � F 0a;mð0Þ
n o

þ
Z 1

0

6ga� 6g2
a

� � a1

Gz
þ a1 g3

a�
1

2
g4

a

� �
�Dgaþ a3

� �
dga

ð48Þ

and

wbL ¼ �
Z 1

0

vbW bB
V

wb gb;
1

Gz

� �
dgb

¼
X1
m¼0

�Sb;m

ð1� DÞkm
F 0b;mð1Þ � F 0b;mð0Þ
n o

þ
Z 1

0

6gb � 6g2
b

� � b1

Gz
þ b1ð1� DÞ g3

b �
1

2
g4

b

� ��

�ð1� DÞgb þ b3

�
dgb ð49Þ

As observed from Fig. 1, the average dimensionless tem-
perature in Eqs. (48) and (49) are equal

waL ¼ wbL ð50Þ

Eqs. (41)–(44), (47) and (50) were used to solve the undeter-
mined and integration constants in Eqs. (22) and (23)
accordingly. Once all the undetermined constants in Eqs.
(22) and (23) and coefficients in (28) and (29) were ob-
tained, the dimensionless temperature distributions of both
subchannels for a double-pass device were thus obtained in
terms of the Graetz number (Gz), eigenvalues (ka,m and
kb,m), expansion coefficients (Sa,m and Sb,m), imperme-
able-sheet location (D) and associated eigenfunctions
(Fa,m(ga) and Fb,m(gb)).

3. Heat-transfer efficiency enhancement

The average Nusselt number for double-pass operations
was defined as

Nu ¼
�hW
k

ð51Þ
where the average heat-transfer coefficient is calculated by
making the energy balance around the whole system

�hð2BLÞðT w � T IÞ ¼ qCpV ðT F � T IÞ ð52Þ
or

�h ¼ qCpV ðT F � T IÞ
ð2BLÞðT w � T IÞ

¼ qCpV
2BL

wF

ww

ð53Þ

in which

T w ¼
T aw þ T bw

2
¼
R 1

Gz
0 T að0; nÞdnþ

R 1
Gz
0 T bð0; nÞdn

2
ð54Þ

Substituting Eq. (53) into Eq. (51) gives

Nu ¼
�hW
k
¼ VW

2aBL
wF

ww

¼ 1

ww

ð55Þ

Similarly, for a single-pass operation

Nu0 ¼
1

w0w

ð56Þ

The device performance improvement by employing a dou-
ble-pass operation is defined as the percent increase in heat
transfer based on that in a single-pass device of the same
working dimensions and operating parameters

Ih ¼
Nu� Nu0

Nu0

¼ w0w � ww

ww

ð57Þ
4. Power consumption increment

The power consumption will increase in a double-pass
device by inserting an impermeable sheet inserted into a
single-pass device. For simplicity to make a comparison,
the friction losses caused by a joint, a diversion or a bend-
ing of a tube are neglected and only the wall friction loss is
considered in the power consumption increment of double-
pass operations in the present study.

The wall friction loss can be estimated by

‘wf ¼ 2f v2L=De ð58Þ
in which v and De are the average velocity of fluid in the
conduits and the equivalent diameter of the conduits,
respectively. The friction factor f is determined by f =
24/Re for the laminar flow in parallel-plate conduits. The
power consumption of a single-pass device is determined
by P0 = Vq‘wf,0 while it in a double-pass device is deter-
mined by P = Vq(‘wf,a + ‘wf,b) which is the sum of the
power consumption in both subchannels a and b. Accord-
ingly, the power consumption increment, Ip, of a double-
pass device is estimated based on the power consumption
in a single-pass device as follows:

Ip ¼
P � P 0

P 0

¼ V q½‘wf;a þ ‘wf ;b� � V q‘wf ;0

V q‘wf;0

¼ 1

D3
þ 1

ð1� D3Þ
� 1 ð59Þ
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5. Results and discussion

The temperature distribution of a double-pass parallel-
plate heat exchanger under uniform heat fluxes was
obtained by solving the energy balance equations with
the aid of the linear superposition of the asymptotic solu-
tion for the inhomogeneous boundary conditions and the
eigenfunctions expansion for the homogeneous part. The
convergence of power series in Eqs. (38) and (39) is shown
in Table 1. The results show that the two finite series of
n = 30 and 33 agree reasonably well for the power series
due to the resulting average Nusselt numbers are the same
for the cases for D = 0.5.

5.1. Temperature distribution and heat-transfer efficiency in

a double-pass device

The wall temperature of a heat exchanger with constant
heat fluxes is usually unknown in prior. However, it is
important for an engineer to calculate the wall temperature
before design a heat exchanger equipment for choosing the
adequate heat exchanger materials. Hence we firstly show
the dimensionless wall temperature distributions of the sin-
gle- and double-pass devices with D and Gz as parameters
in Fig. 2. The lower Gz represents the lower volumetric
flow rate or longer conduit length resulting in the longer
residence time of the fluid and higher outlet temperature
as confirmed by Eq. (47). Therefore, in order to maintain
the uniform heat flux, the higher wall temperature for
employing the lower Gz is expected and the phenomenon
was demonstrated in Fig. 2. The results in Fig. 2 indicate
that the wall temperature varies more sharply along with
the axial direction for Gz = 1 than that for Gz = 10. The
influence of the impermeable-sheet location, D, is also illus-
trated in Fig. 2. The value of D = 0.5 means that the imper-
meable sheet is inserted at the middle position between the
two parallel plates while D < 0.5 infers the impermeable
sheet near the bottom plate and D > 0.5 infers the imperme-
able sheet near the top plate. As shown in Eqs. (5) and (6),
the va increases with decreasing D and the vb increases with
increasing D. Moreover, the heat-transfer coefficient of
fluid is directly proportional to the fluid velocity and the
Table 1
Convergence of power series in Eqs. (38) and (39) for n= 30 and 33 with D =

Gz n km Sa,m Sb,m

1 30 �2.2 �8 � 10�17 �7 � 10
33 �2.2 �1 � 10�16 5 � 10

10 30 �2.2 4 � 10�16 9 � 10
33 �2.2 3 � 10�16 8 � 10

100 30 �2.2 3 � 10�16 7 � 10
33 �2.2 �1 � 10�16 �2 � 10

1000 30 �2.2 3 � 10�15 6 � 10
33 �2.2 �2 � 10�15 �5 � 10
higher heat-transfer coefficient means that the larger heat
is removed from the wall. Therefore, Fig. 2 illustrates that
the bottom wall temperature, wa(0,n), decreases with
decreasing D, but the top wall temperature, wb(0,n),
increases with decreasing D.

Fig. 3 shows the local transversal temperature distribu-
tion in subchannels a and b at Gzn = 0.5 (the middle point
of the conduit) with D and Gz as parameters. Because of
the fluid firstly feeds into subchannel a and then flows
reversely into subchannel b as shown in Fig. 1, then the
fluid temperature in subchannel a is lower than that in
the subchannel b. It is worth to note that the temperature
distribution in subchannel a is nearly parabolic curve and it
is likely the exponential curve in subchannel b. This is due
to the thermal resistance of the impermeable sheet is
neglected and thus, the fluid in the subchannel a can receive
the heat from subchannel b through the impermeable sheet.
Hence, in subchannel a, the fluid is heated by the bottom
wall and impermeable sheet simultaneously, and the para-
bolic temperature distribution is achieved. However, for
subchannel b, the fluid is only heated by the top wall and
delivers the heat to subchannel a, so the temperature distri-
bution is of exponential curve. The fluid temperature is
lower and more uniform for higher Gz than that for lower
Gz as shown in Fig. 3. The temperature distribution can
indicate that the wall temperature increases with D in sub-
channel a and decreases with D in subchannel b as con-
cluded from Fig. 2 when one focuses on the point of
ga = 0 and gb = 0 in Fig. 3.

Table 2 illustrates the calculation results of the average
Nusselt number with D as a parameter. Nusselt number
provides a measure of convection heat transfer occurring
at the wall surface. As shown in Table 2, the Nu increases
with increasing Gz and as D moves away 0.5. As referred
to Eq. (55), the Nu is inversely proportional to the average
wall temperature, ww, hence the larger Nu also implies that
the lower average wall temperature will be obtained. More-
over, the heat-transfer efficiency enhancement, Ih, by
employing a double-pass operation is defined as the percent
increase in Nu, based on that in a single-pass device of the
same working dimensions and operating parameters, as
shown in Eq. (57). Some calculated results of Ih are shown
0.5

a1 a3 b1 b3 Nu
�18 3.69 0.01 �1.69 4.05 0.39
�18 3.69 0.01 �1.69 4.05 0.39

�17 1.27 0.17 0.73 0.33 3.34
�17 1.27 0.17 0.73 0.33 3.34

�17 1.03 0.18 0.97 0.20 5.11
�17 1.03 0.18 0.97 0.20 5.11

�16 1.00 0.19 1.00 0.19 5.36
�16 1.00 0.19 1.00 0.19 5.36



Fig. 2. Dimensionless wall temperature vs. Gzn with D and Gz as parameters.

Fig. 3. The local transversal temperature in subchannels a and b with Gz as a parameter; Gzn = 0.5.

Table 2
The average Nusselt number with D as a parameter

Nu D = 0.1 D = 0.3 D = 0.5 D = 0.7 D = 0.9

Gz = 1 0.397 0.396 0.395 0.396 0.397
Gz = 5 2.351 2.294 2.275 2.294 2.351
Gz = 10 3.510 3.383 3.343 3.383 3.510
Gz = 50 5.208 4.934 4.848 4.934 5.208
Gz = 100 5.506 5.201 5.106 5.201 5.506

Table 3
The heat-transfer efficiency enhancement with D as a parameter

Ih (%) D = 0.1 D = 0.3 D = 0.5 D = 0.7 D = 0.9

Gz = 1 �50.63 �50.84 �50.91 �50.84 �50.63
Gz = 5 4.12 1.57 0.75 1.57 4.12
Gz = 10 20.33 15.98 14.60 15.98 20.33
Gz = 50 36.90 29.68 27.44 29.68 36.90
Gz = 100 39.23 31.50 29.11 31.50 39.23
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in Table 3. The heat-transfer efficiency enhancement, Ih,
increases with increasing Gz and it is also symmetric to
D = 0.5 for fixed Gz, as observed from Table 3. The posi-
tive signs in Table 3 imply two results: (1) the heat-transfer
efficiency of a double-pass device is higher than that of a
single-pass device under such operating conditions; (2) a
double-pass device can perform a lower average wall tem-
perature than that in a single-pass device by employing
the same operating conditions.

5.2. Power consumption increment

The double-pass operation by inserting an impermeable
sheet in to an open duct not only enhance the heat-transfer



Table 4
The power consumption increment with impermeable-sheet location as a
parameter

IP

D = 0.1 D = 0.3 D = 0.5 D = 0.7 D = 0.9

1000.37 38.95 15 38.95 1000.37
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efficiency but also increase the power consumption. As
shown in Eq. (59), the power consumption increment, Ip,
of a double-pass device is defined based on the power con-
sumption in a single-pass device. The working dimensions
in the calculation procedure are as follows: L = 1.2 m,
W = 0.04 m, B = 0.2 m, V = 1 � 10�5 m3/s, l = 8.94 �
10�4 kg/m s and q = 997.08 kg/m3. The corresponding
power consumption of a single-pass device is P0 = 2.68 �
10�7 J/s. The calculating results of Ip are shown in Table 4.
Although the maximum power consumption increment is
high as 1000 for D = 0.1 and 0.9, the corresponding power
consumption is still small, say P = 2.68 � 10�4 J/s, and it is
reasonable to ignore the power consumption in all opera-
tion conditions. An economic consideration of both the
heat-transfer efficiency enhancement, Ih, and the power
consumption increment, Ip, is made in the form of Ih/Ip

in this study and the results are represented in Fig. 4.
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Fig. 4. The Ih/Ip with D as a parameter.
The dash line in the Fig. 4 is the zero point of
Ih/Ip and represents that the heat-transfer efficiency of both
single- and double-pass devices are equal. The lines above
the dash line shows that a double-pass device has better
heat-transfer efficiency than that in a single-pass device.
Fig. 4 indicates that the value of Ih/Ip increases with
increasing Gz and for the above the dash line range, the
values of Ih/Ip increases as D moves away from 0.5.

6. Conclusions

The mathematical model of the heat-transfer phenome-
non in a double-pass laminar countercurrent heat exchan-
ger with uniform heat fluxes has been developed and
investigated theoretically in this study. The analytical solu-
tions for such conjugated Graetz problem are obtained by
using an eigenfunction expansion in terms of power series
for the homogeneous part and an asymptotic solution for
the non-homogeneous part. The effects of Gz and D on
the wall temperature, fluid temperature distributions and
heat-transfer efficiency enhancement in a double-pass heat
exchanger are discussed. The theoretical results show that
the heat-transfer efficiency increases with increasing Gz
and as D moves away from 0.5. The best selection of oper-
ating conditions by considering both the heat-transfer effi-
ciency enhancement and power consumption increment,
say Ih/Ip, are Gz = 100, D = 0.5 as shown in Fig. 4. More-
over, the mathematical statement performed in this study
can be applied to each particular application in any geom-
etry with more general boundary conditions of multistream
or multiphase problems and to predict the wall tempera-
ture distribution of the double-pass devices under uniform
heat fluxes for choosing the adequate materials to build up
a heat exchanger equipment.
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Appendix A

Substituting the boundary conditions, Eqs. (33) and
(34), into Eqs. (31) and (32) gives

dm0 ¼ 1

dm1 ¼ 0

dm2 ¼ 0

dm3 ¼ kmD

..

.

dmn ¼
6Dkmðdmn�3 � dmn�4Þ

nðn� 1Þ

ðA:1Þ

and
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em0 ¼ 1

em1 ¼ 0

em2 ¼ 0

em3 ¼ kmð1� DÞ

..

.

emn ¼
6ð1� DÞkmðemn�3 � emn�4Þ

nðn� 1Þ

ðA:2Þ
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